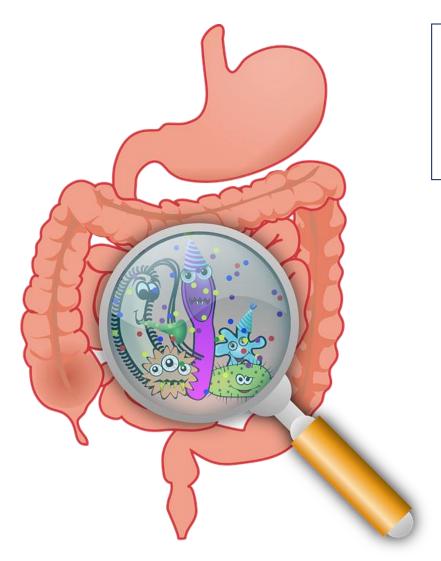
alicセミナー 腸内フローラと食品・乳製品


平成28年2月8日(月) 公益財団法人日本ビフィズス菌センター 学術委員会 委員 瀬戸 泰幸 (雪印メグミルク(株)ミルクサイエンス研究所 主席)

本日の内容

- ・腸内フローラとは
- ・腸内フローラの解析方法
- ・腸内フローラの構成菌と健康なヒトのフローラ
- ・食事と腸内フローラ
- ・腸内フローラの役割と疾病
- ・腸内フローラの改善方法
- ・今後の課題

腸内フローラとは

ヒトの腸内には数多くの細菌が棲みついている。

最新研究では、腸管全体で 1000種類、1000兆個 (ヒトの細胞が約60兆個)

これらの菌の集合体を 腸内フローラと呼ぶ。 (フローラ=お花畑)

ちなみに、ヒトのうんちには、 1gに約1兆個の腸内細菌が 含まれる。

なぜ今、腸内フローラが注目されるのか

- 2つの大きな要因
- 1. 腸内フローラの解析法の発展
 - ・培養法による解析から、DNAを利用した解析へ
 - ・次世代シーケンサーによる大規模な解析方法の確立

- 2. 腸管免疫研究の発展
 - ・栄養や水分吸収の場と考えられてきた腸管が、 最大の免疫器官でもあることが明らかに。
 - ・腸内フローラが、腸管の免疫応答と密接に関係していることが判明。

腸内フローラの分析方法の歴史

1960年以前

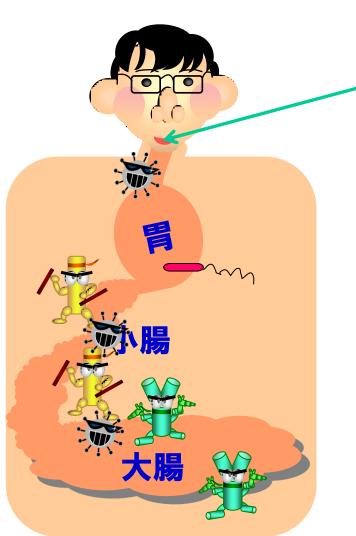
培養法を用いた個々の腸内細菌の研究 ⇒腸内フローラの全体像がわからない

1960年代

培養法による腸内フローラ分析法の確立 腸内フローラの全体像が把握できるようになる

⇒培養できない菌が多くある

1990年代


DNAベースでの腸内フローラ分析法の開発 (DGGE法、T-RFLP法、q-PCR法など) 培養できない菌も測定でき信頼性が上がる ⇒定量性など、各方法にそれぞれ弱点がある

2000年代

次世代シーケンサーによる腸内フローラ分析法確立 弱点が少ない網羅的な解析法! 5

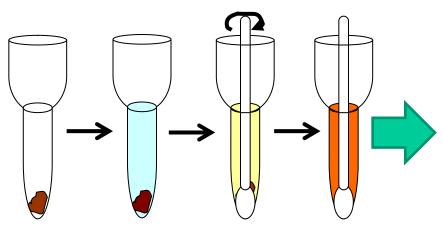
腸管免疫研究の発展

腸管内は、外部環境と直接つながっている。

病原菌やウイルスも取り込まれる。

腸管は感染しやすい場所

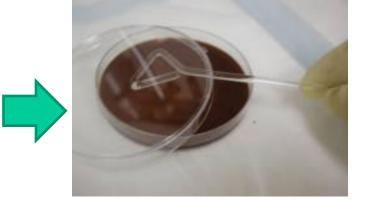
腸管は実はヒト最大の免疫器官



腸内細菌やその代謝物が、腸管の細胞に作用し、免疫反応と関わることが分かってきた。

本日の内容

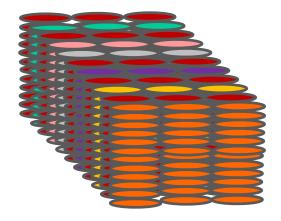
- ・腸内フローラとは
- ・腸内フローラの解析方法
- ・腸内フローラの構成菌と健康なヒトのフローラ
- ・食事と腸内フローラ
- ・腸内フローラの役割と疾病
- ・腸内フローラの改善方法
- ・今後の課題


腸内フローラの分析(培養法)

糞便

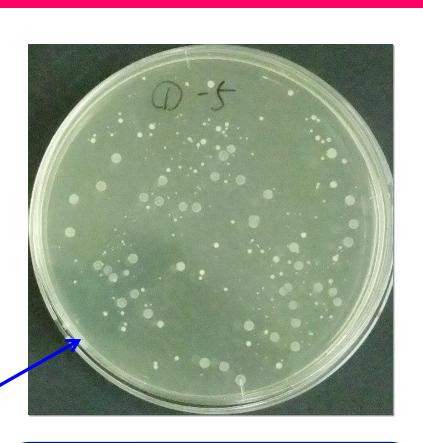
均質化 試料

試料の希釈

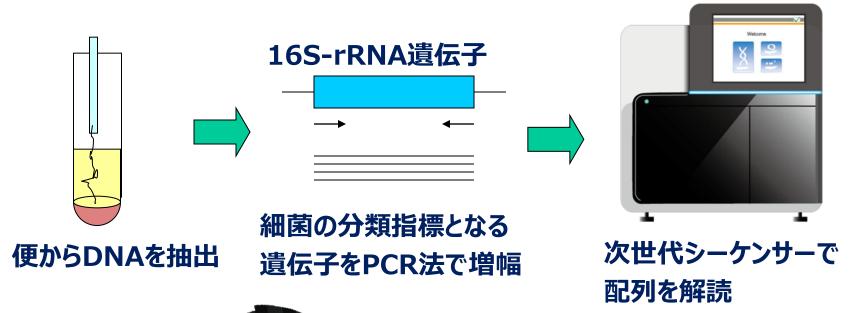


試料の塗抹

嫌気培養


培養法による腸内フローラ解析

菌数測定


1名あたり10種類以上の解析培地

複数のコロニーが出る場合があり、測定に熟練が必要。

- ・すぐ培養しないと菌が死ぬ
- ・多くの人手が必要
- ・菌数測定に熟練が必要
- ・培養できない菌も多い

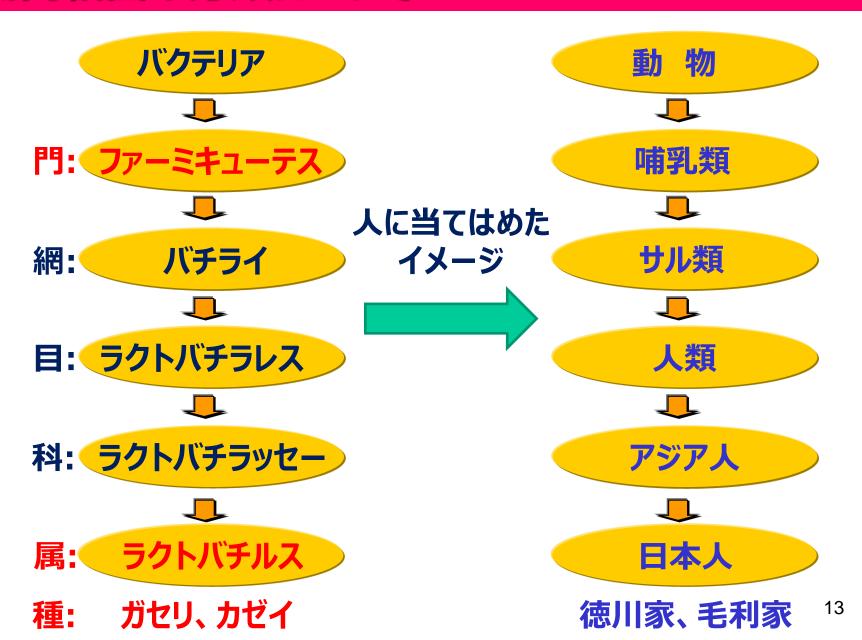
次世代シーケンサーによる腸内フローラの分析

読み取った配列の 分類をソフトで決定

- ・凍結保存サンプルも解析できる。
- ・培養できない菌も解析できる。
- ・培養法よりは少人数で済む。
- ・ソフトウェアへの習熟が必要。

培養法と次世代シーケンサー法の比較

	培養法	シーケンサー法
測定菌の広さ	×培養可能な菌のみ	○全ての菌が対象
分類の細かさ	×大まか	○細かい
必要な人手	×多い	○少ない
凍結保存糞便	×使えない	○使用可能
生菌の分離	○可能	×できない
死菌の影響	○測定されない	△DNA残れば影響
コスト	○安い	×高い


シーケンサー法は、腸内フローラ解析技術として優れているが、 培養法には生菌を分離できるメリットがある。

11

本日の内容

- ・腸内フローラとは
- ・腸内フローラの解析方法
- ・腸内フローラの構成菌と健康なヒトのフローラ
- ・食事と腸内フローラ
- ・腸内フローラの役割と疾病
- ・腸内フローラの改善方法
- ・今後の課題

腸内細菌の分類について

消化管の部位によるフローラの違い

消化管の各部位で菌数やフローラは異なっている。

胃:1g中1000個以下

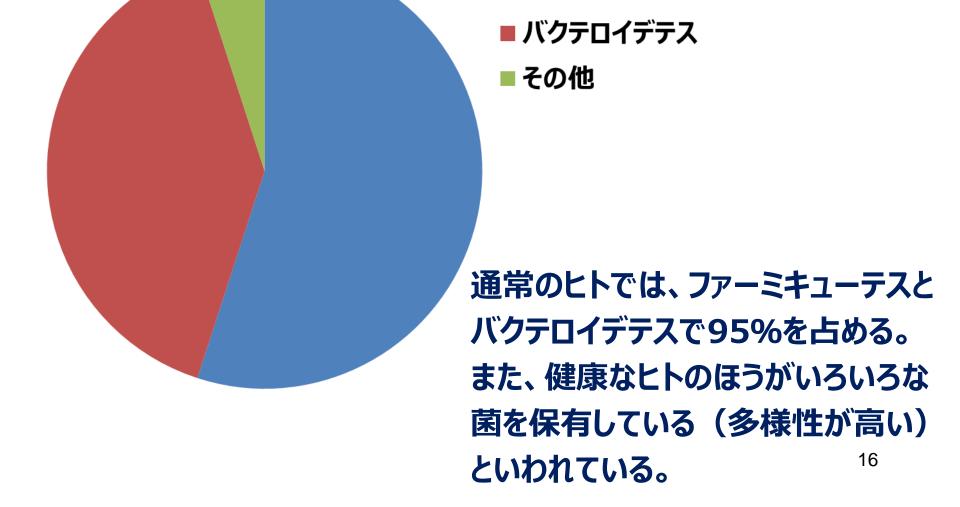
耐酸性ある一部のラクトバチルス

小腸:1g中1万~1000万個程度

ラクトバチルスなどが中心

大腸:1g中1000億個程度 バクテロイデス、クロストリジウム、ビ フィズス菌などの絶対嫌気性の菌

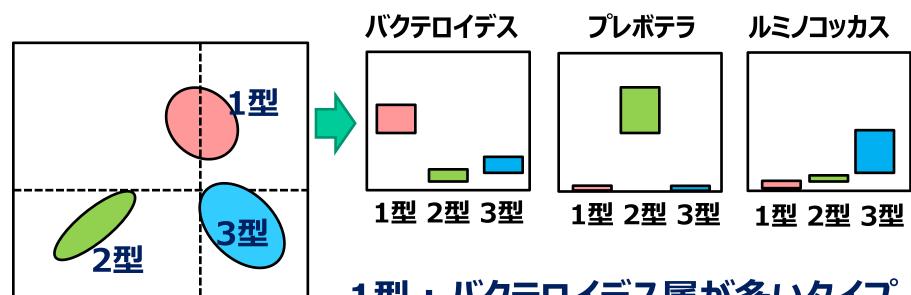
腸内フローラという場合、通常は 大腸や糞便のフローラを指す14


腸内フローラを構成する主な菌

広く捉えるときは門レベルの分類を良く使う。 細かくみるときは属、種レベルの分類をよく使う。

門(網、目、科)	属	種
ファーミキューテス	クロストリジウム	
	ルミノコッカス	
	ラクトバチルス	ガセリ、カゼイ
バクテロイデテス	バクテロイデス	
	プレボテラ	
アクチノバクテリア	ビフィドバクテリウム	
プロテオバクテリア	エッシェリッチア	(大腸菌)

健康なヒトの腸内フローラ


門レベルの分類

■ ファーミキューテス

健康な人の腸内フローラ: エンテロタイプ

近年、健康な人の腸内フローラは、主に3パターンに 分類されることが報告された。Arumugamら Nature 2011

1型:バクテロイデス属が多いタイプ

2型:プレボテラ属が多いタイプ

3型:ルミノコッカス属が多いタイプ

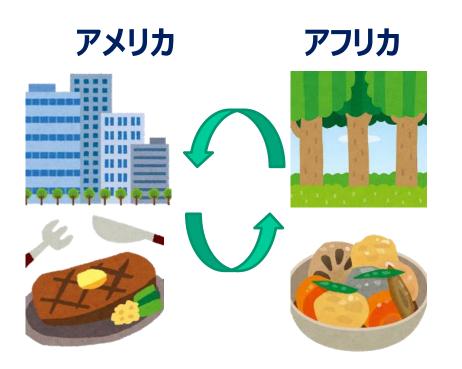
各エンテロタイプの特徴

エンテロタイプは食習慣との関係があるといわれている。

- ●1型(バクテロイデスタイプ) 米国人や中国人に多くみられ、低炭水化物、高タンパク質 の食事に多いとされる。
- 2型(プレボテラタイプ) アジア人、中南米やアフリカの人に多くみられ、高食物 繊維の食事に多いとされる。
- ●3型(ルミノコッカスタイプ) 日本人やスウェーデン人に多くみられ、動物性タンパク質 と脂肪が多い食事と関連性があるとされる。

ただし、きれいに3つには分かれないという研究者もいる。

本日の内容


- ・腸内フローラとは
- ・腸内フローラの解析方法
- ・腸内フローラの構成菌と健康なヒトのフローラ
- ・食事と腸内フローラ
- ・腸内フローラの役割と疾病
- ・腸内フローラの改善方法
- ・今後の課題

食事と腸内フローラ

食事と腸内フローラは密接な関係がある。

食事を変更して2週間で腸内フローラは変化する

(O'Keefe SJ et al, Nat Commun. 2015)

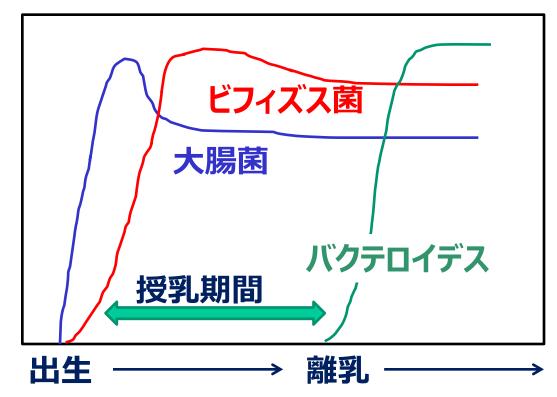
アメリカに住むアフリカ人と南アフリカ人各20名の生活を入れ替えた。

2週間で腸内フローラが変化した。アメリカ生活では胆汁酸が増え、短鎖脂肪酸が減少した。

食事と腸内フローラ

これまでに報告がある、食事とフローラの関係

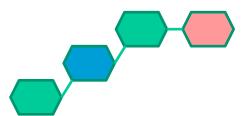
- ●高脂肪食肥満になるとファーミキューテス門が増える。
- ●肉食 バクテロイデテス門や大腸菌の仲間が増える
- ●低食物繊維食腸内細菌の多様性が減少する。


その他、細かい菌種が変化する報告もあるが、評価が定まっていないものもあるのでここでは省略する。

母乳と腸内フローラ

母乳は赤ちゃんの理想の食事。 母乳で育てられた赤ちゃんではビフィズス菌がほとんどを占める。

菌数



母乳と腸内フローラ

母乳中の特別な構造を持つオリゴ糖が、ビフィズス菌を増やすカギ

Kitaokas Appl. Environ. Microbiol. (2005) Wadas Appl Environ Microbiol. (2008)

ラクト-N-テトラオース ラクト-N-ビオースI

グルコース

ガラクトース

N-アセチルグルコサミン

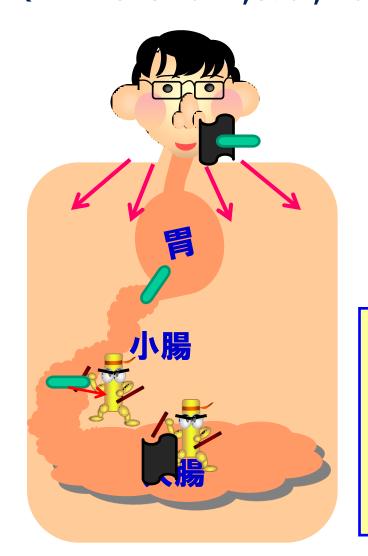
数ある腸内細菌の中で、赤ちゃんにいるタイプ のビフィズス菌だけの栄養源となる。

乳製品と腸内フローラ

牛乳に含まれる乳糖には、オリゴ糖ほどではないが、ビフィズス菌を増やす作用がある。

ヨーグルトには腸内ではたらく乳酸菌(プロバイオティクス)を使用しているタイプや、腸内の有用菌を増やすオリゴ糖を含むタイプがある。

チーズなどが、腸内フローラに及ぼす影響についてはまだよくわかっていない。



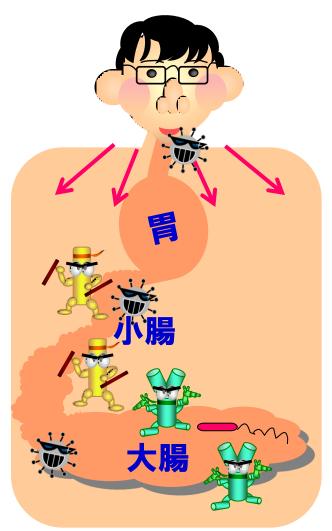
日本人の食事と腸内フローラ

海苔を分解できる酵素を日本人の腸内細菌から発見 (J-H Hehemann, et al, Nature, 2010.)

海洋細菌の研究者が海苔を分解できる菌を発見、分解酵素を同定。

日本人の腸内細菌(バクテロイデス・プレビウス)にも酵素があることが判明。

なぜ日本人の腸内細菌だけか(仮説)

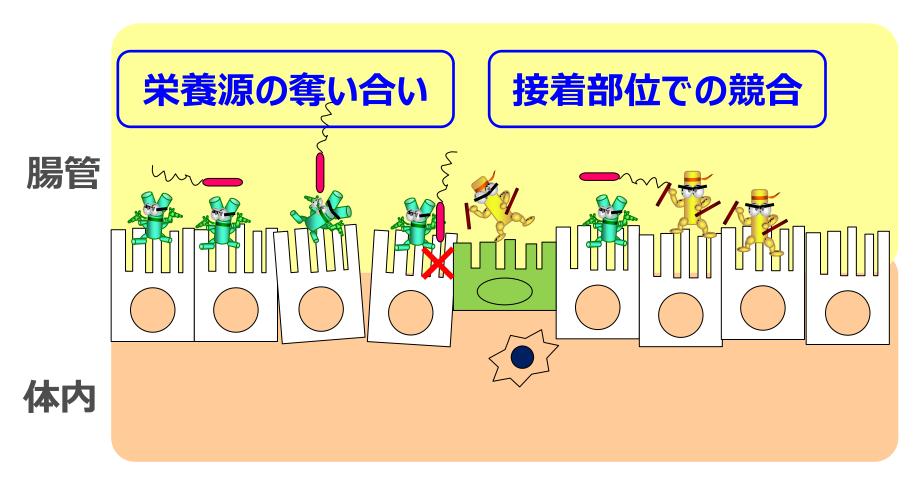

- ①海苔と一緒に海苔分解菌を食べる。
- ②海苔分解菌が腸に届く
- ③腸内細菌と遺伝子のやり取りを行う。
- 4腸内細菌が海苔を分解できるようになる。

本日の内容

- ・腸内フローラとは
- ・腸内フローラの解析方法
- ・腸内フローラの構成菌と健康なヒトのフローラ
- ・食事と腸内フローラ
- ・腸内フローラの役割と疾病
- ・腸内フローラの改善方法
- ・今後の課題

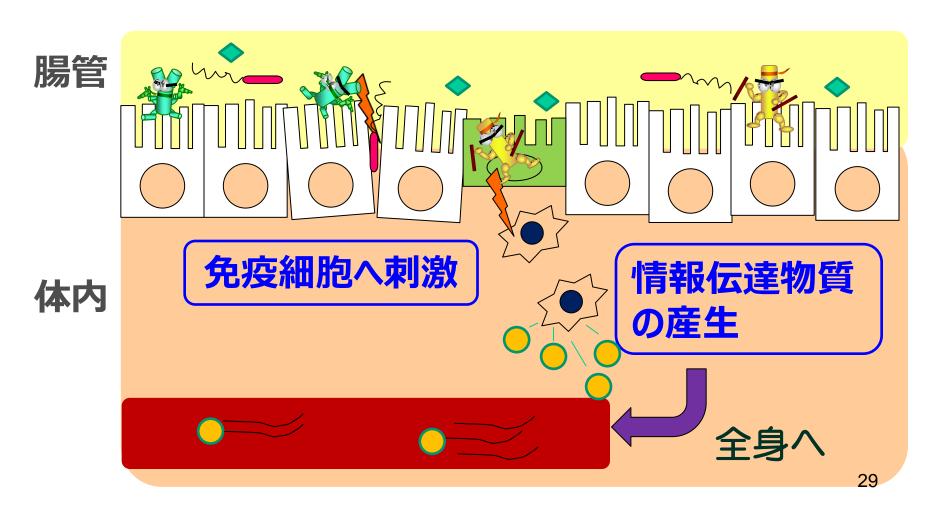
腸内フローラの役割

腸内フローラは、主に次のような働きで健康に寄与していると考えられている。


有害菌に拮抗して、腸管への接着や腸管内での増殖を抑制する。

菌の構成物や代謝物が、免疫細胞を刺激し、免疫を制御する。

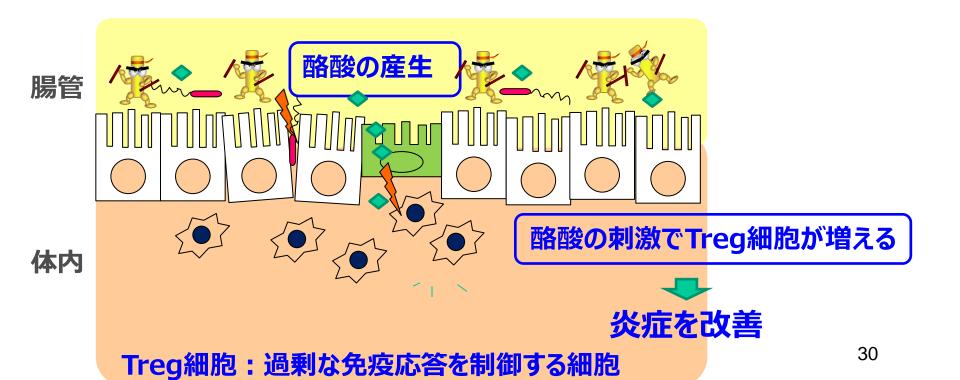
菌の代謝物が腸管細胞の栄養となり、腸管のバリア性を高める。


腸内フローラの働き1

有害菌の腸管への接着や増殖を抑え、感染を抑制する。

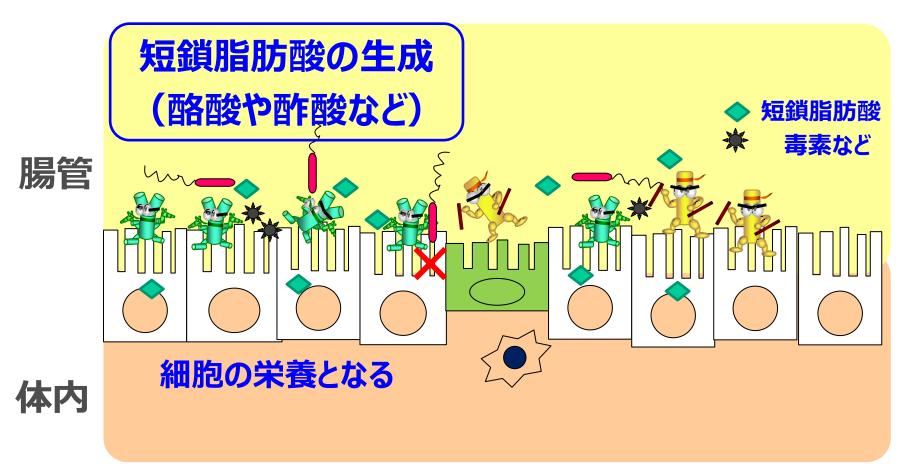
腸内フローラの働き2

菌の構成物や代謝物が免疫細胞を刺激して免疫を 制御する。

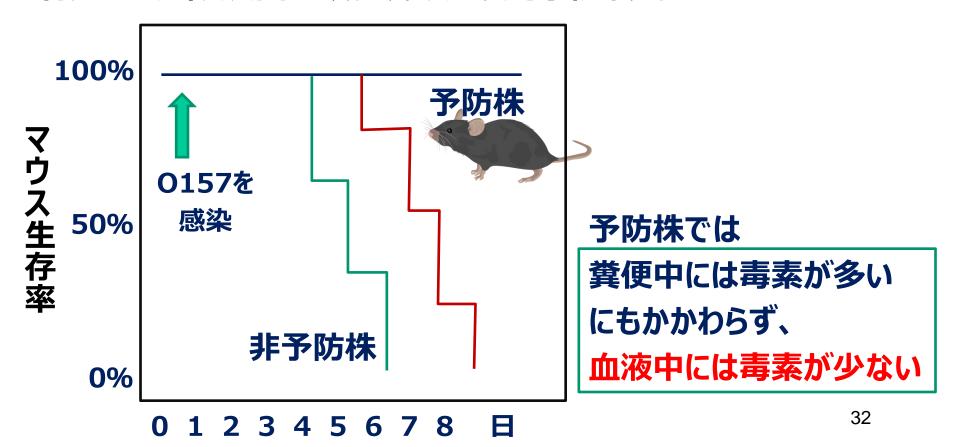

クロストリジウムと免疫制御

17種類の腸内細菌で炎症が抑制される

(Atarashi et al, Nature. 2013)


腸内フローラからクロストリジウム属中心とする17種の菌を分離

腸内フローラの働き3

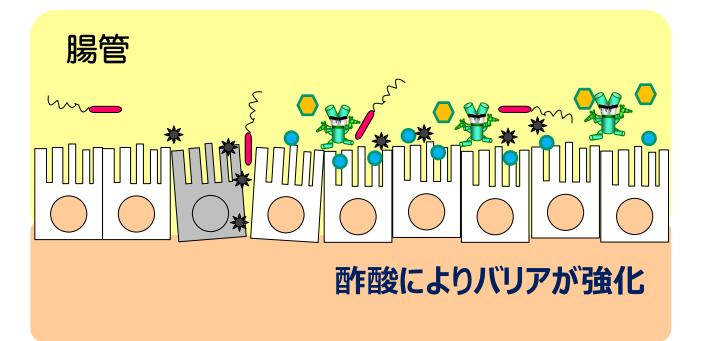

代謝物が腸管細胞の栄養となり、また、腸管のバリア性を高める。

O157感染と腸内フローラ

特定のビフィズス菌が大腸菌O157によるマウスの死を予防 (S Fukuda et al, Nature. 2011)

無菌マウスにビフィズス菌を投与した後にO157を感染させると、 特定のビフィズス菌のみがマウスの死を予防した。

0157感染と腸内フローラ


ビフィズス菌が大腸菌O157によるマウスの死を予防

(S Fukuda et al, Nature. 2011)

ゲノム比較の結果、予防株のみ 果糖取込み能を有し、大腸で果 糖から酢酸を産生できる。

酢酸が腸管のバリアを強化し、 毒素の侵入を抑制

- * ベロ毒素
- 酢酸
- 果糖

腸内フローラの異常(Disbiosis)

いくつかの疾病で、腸内フローラが正常でないという報告がなされている。

(Disbiosisがみられる疾病)

- ・偽膜性大腸炎 本来は少ないクロストリジウム・ディフィシル菌が増加する。
- ・炎症性腸疾患 腸内細菌の多様性が減少。ファーミキューテスが減少。
- ・多発性硬化症 ファーミキューテス、とくにクロストリジウムが減少。
- ・過敏性腸症候群(下痢型)小腸における細菌の異常増殖。

腸内フローラの異常(Disbiosis)

逆に、腸内フローラが乱れることで、疾病の要因になる可能性も考えられている。

(Disbiosisの要因)

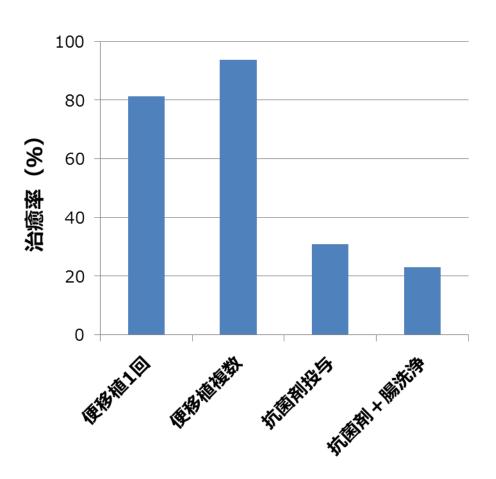
- ・抗生物質の服用 多くの腸内菌が死滅し、特定の菌だけ生き残る。
- ・胃のpH調整剤の服用 pHが変わり、通常以外の菌が増える場合がある。
- ・食物繊維の少ない食事 大腸に栄養源が届かず、菌の多様性が減る。
- ・高脂肪の食事 胆汁酸が多く出て、胆汁酸耐性の低い菌が死ぬ。

Disbiosisとディフィシル菌感染症

- クロストリジウム・ディフィシル感染症
 - ・胞子をつくり、抗生物質耐性が非常に高い腸内細菌。
 - ・増殖すると非常に激しい炎症を起こし治りにくい。
 - ・死亡率は数%、高齢者の場合10%以上にも及ぶ。
 - ・抗生物質の摂取後に起こる場合がほとんど。

抗生物質を継続して飲む

主要な腸内細菌が減少する(Disbiosis)

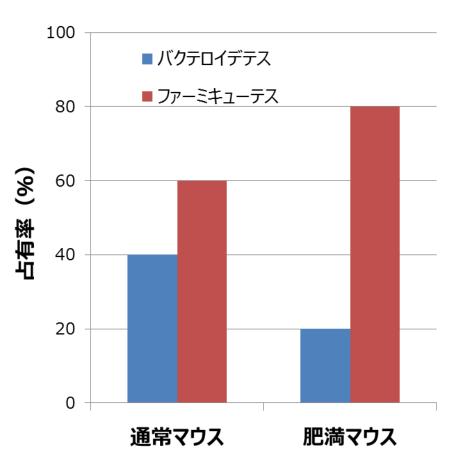

ディフィシル菌のみ生き残る

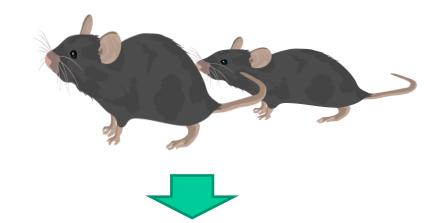
ディフィシル菌が増殖し、炎症を発生させる

便移植の可能性

健常人の糞便移植により、ディフィシル菌感染症に伴う偽膜性大腸炎患者が回復 (van Nood E et al, N Engl J Med. 2013)

腸内フローラ正常化のため、 健康なヒトの糞便を移植


従来の抗菌剤投与よりも、治 癒率が非常に高い。

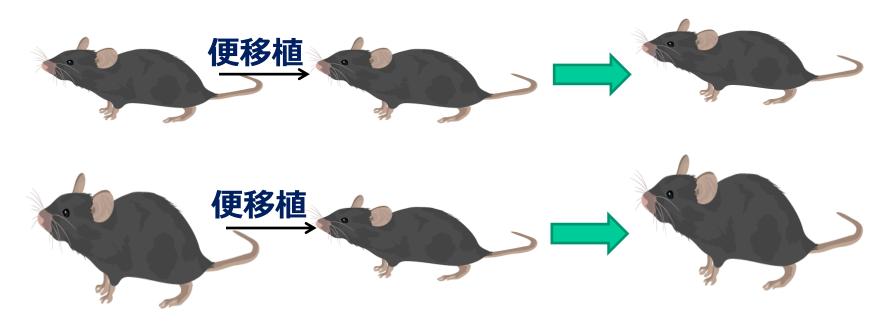

潰瘍性大腸炎など、他の腸管 疾患にも応用が試みられている。

肥満マウスの腸内フローラ

肥満のマウスは、通常マウスと腸内フローラが異なる

(Leyら, Proc Natl Acad Sci U S A. 2005)

肥満マウスでは、ファーミキューテス門が多く、バクテロイデテス門が少ない。



肥満の結果なのか、原因なのか

肥満マウスの腸内フローラ

肥満のマウスは、通常マウスと腸内フローラが異なる (Leyら, Proc Natl Acad Sci U S A. 2005)

肥満・痩せマウス 無菌マウス

肥満マウスの便を移植すると、同じ餌でも肥満になる。 腸内細菌が肥満の一因となっていることが判明。

本日の内容

- ・腸内フローラとは
- ・腸内フローラの解析方法
- ・腸内フローラの構成菌と健康なヒトのフローラ
- ・食事と腸内フローラ
- ・腸内フローラの役割と疾病
- ・腸内フローラの改善方法
- ・今後の課題

よい腸内環境、腸内フローラをつくるには

- ・プロバイオティクスの摂取 良い菌を腸に取り入れる。
- ・プレバイオティクスの摂取 自分の腸の中の良い菌を増やす。
- ・食物繊維をとる 大腸に届き、腸内細菌の餌になる。
- ・バランスよくいろいろなものを食べる 腸内細菌の多様性を増やす。

プロバイオティクスとは

イギリスのFuller博士が1989年にまとめた概念 現在は2002年のWHOの定義、

「適切な量を摂取することで、宿主によい影響を 及ぼす生きた微生物」となっている。

⇒乳酸菌・ビフィズス菌など

プロバイオティクス⇒Probiosis (生物共生) 有害菌を抑制して体によい生菌

アンチバイオティクス(抗生物質)

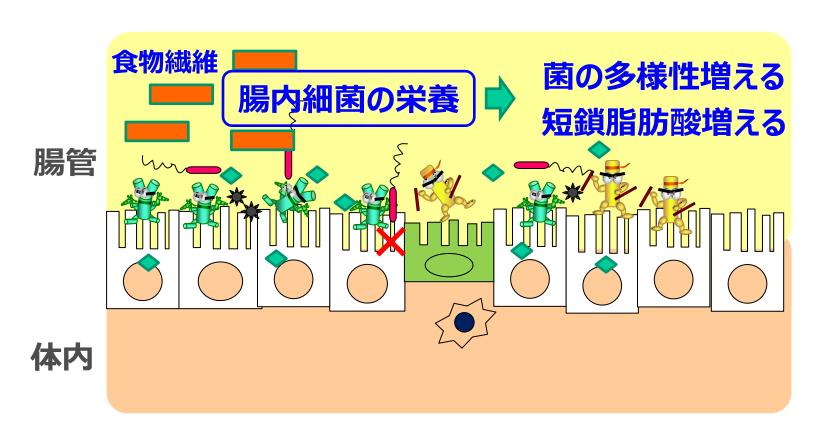
有害菌を殺菌する医薬品・・・良い菌も死ぬ

プレバイオティクスとは

イギリスのGibson博士が1995年にまとめた概念 「腸内の特定の細菌の活性を変化させることで、 宿主の健康を改善する難消化性の食品成分」 ⇒オリゴ糖など(ビフィズス菌を良く増殖させる)

プレバイオティクス⇒pre(事前に) 体に良い菌を増やす難消化性の物質。

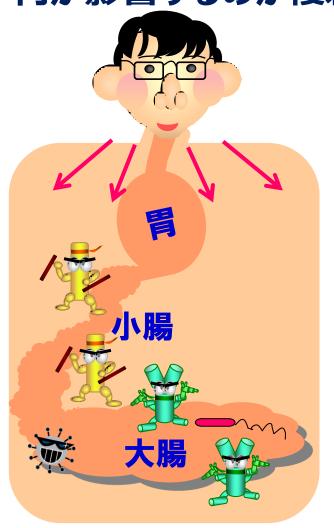
プロバイオティクス⇒Probiosis (生物共生) 有害菌を抑制して体によい生菌


プロ+プレ⇒シンバイオティクスというときもある

食物繊維について

ヒトの消化酵素では分解できない難消化性の糖質

そのまま大腸まで届き、腸内細菌の栄養源になる

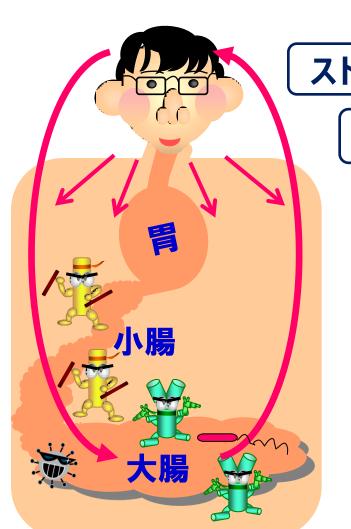


今後の課題

- ・腸内フローラとは
- ・腸内フローラの解析方法
- ・腸内フローラの構成菌と健康なヒトのフローラ
- ・食事と腸内フローラ
- ・腸内フローラの役割と疾病
- ・腸内フローラの改善方法
- ・今後の課題

今後の課題

腸内フローラには多くの菌が関与しているため、どの菌の何が影響するのか複雑で、簡単に解析できない。


そのため、論文で現象が報告 されても、メカニズムが明らかに なっていない場合が多い。

メカニズムを明確にして、結果の信頼性を高める必要がある。

今後の課題

最近では、腸での刺激が脳まで伝わることがいわれ、 (脳腸相関)研究対象が広がっている。

うつ

こうしたメンタルの部分にも腸内 フローラが関わるのか、ということ が、新たな課題となっている。

ご清聴ありがとうございました

図の一部は、いらすとやウェブサイト (http://www.irasutoya.com/) と Togo picture gallaryのフリー素材を使用しました。

Togo picture gallery by DBCLS is Licensed under a Creative Commons 表示 2.1 日本 (c)